ABOUT Open Control Architecture

The Open Control Architecture is a system control and monitoring interoperability architecture. The motivation behind OCA is to allow robust control and monitoring interoperability across a wide range of devices from different manufacturers. The creation of a common control architecture will allow new levels of complex system design and integration while simultaneously reducing time, cost, and effort.

OCA’s intended application is professional media networks.

The new AES standards project X210 is starting work now to make OCA into an open public standard.

ABOUT The OCA Alliance

The OCA Alliance was formed by a group of nine professional audio manufacturers who seek to develop and promote the Open Control Architecture (OCA) become an open public communications standard for control and monitoring of devices in professional media networks.

The OCA Alliance is a non-profit trade association and is seeking new members.

Full Members

- Bosch
- d&b audiotechnik GmbH
- Duran Audio
- LOUD Technologies
- PreSonus
- Salzbrenner Stagetec Mediagroup
- TC Group
- Yamaha Commercial Audio

Device Model Diagram

http://www.oca-alliance.org
Framework (OCF)
- Device model
- Functional mechanisms

Class Tree (OCC)
Object-oriented definition of control & monitoring functional repertoire.
- Manager Classes & global functions
- Worker Classes & monitors
- Agent Classes & modifiers/aggregators

Protocol Implementations (OCP.1 ... OCP.n)
OCA will be a family of protocols for different contexts.
- OCP.1: for TCP/IP networks
- OCP.2-n: TBD, may include USB, XML, ...

Worker Examples
- Actuators
 - OcaGain = { Value }
 - OcaFilterParametric = { Frequency, Boost, Shape }
 - OcaMute = { Setting [Muted | Unmuted] }

- Sensors
 - OcaLevelMeter = { Reading, MeterLaw }
 - OcaTemperatureSensor = { Reading }

- Blocks
 - Grouper = { Sets of Workers }
 - Library = { Sets of stored parameter values }